Fermilab Work on Instrumentation for LHC

John Marriner Fermilab September 17, 2003

f

Tevatron Tune Tracker

- A tune tracker design concept has been developed.
- The tune tracker utilizes a standard phase locked loop.
- Some special features
 - System is based on digital technology.
 - System is highly programmable.
 - > System uses 3 tunable oscillators.
 - ❖A pulsed oscillator for coarse resolution.
 - One higher and one lower frequency for fine resolution.

Tevatron Tune Tracker Block Diagram

Tevatron Tune Tracker Status

- The hardware design has been completed.
- The software has been completed and tested in simulations.
- The system will be fabricated by the end of the shut down and will be tested when operations resume.

Future Work

- Test system with beam and understand problems of operation in the Tevatron environment.
- Understand advantages/disadvantages of operating with a pulsed excitation.
- Understand how to use multiple oscillators effectively.

f

Wideband Schottky Pickup

- Center frequency is about 1.8 GHz and the Q is about 10.
- Adequate sensitivity and bandwidth to measure single bunches of protons and antiprotons.
- Ability to measure
 - > Tunes
 - **≻** Chromaticity
 - > Emittances
- Some problems with coherent signals and tune coupling, especially while the machine is ramping.

Tune and Chromaticity

Antiprotons

Protons

Bunch-by-Bunch Tunes

Bunch-by-Bunch Chromaticity

chromaticity

Pickup Design

- The pickup design was adapted from a stochastic cooling system operating in the 4-8 GHz band.
- The design uses a waveguide coupled to the beam chamber with an array of slots.

Slotted Waveguide Pickup

1.7 GHz 109 x 75 mm aperture

Test Tank 6 GHz Array

Measured Pickup Sensitivity in Recycler

Sum Mode

Difference Mode

Directivity Measured at 12-15 dB

Tevatron Schottky Signal Processing

Schottky Pickup for LHC

- A high-frequency, broadband Schottky pickup can be built for LHC with rather little R&D.
- Development of the Tevatron pickup as a diagnostic tool continues.